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a  b  s  t  r  a  c  t

In  a  non-hypothesis  driven  metabolomics  approach  plasma  samples  collected  at  six  different  time  points
(before,  during  and  after  an exercise  bout)  were  analyzed  by  gas  chromatography–time  of flight  mass
spectrometry  (GC–TOF  MS).  Since  independent  component  analysis  (ICA)  does  not  need  a priori  infor-
mation  on  the  investigated  process  and  moreover  can  separate  statistically  independent  source  signals
with non-Gaussian  distribution,  we  aimed  to elucidate  the  analytical  power  of  ICA  for  the  metabolic
pattern  analysis  and  the  identification  of  key metabolites  in this  exercise  study.  A novel  approach  based
on descriptive  statistics  was  established  to  optimize  ICA  model.  In the  GC–TOF  MS  data  set  the  num-
ber  of  principal  components  after  whitening  and  the  number  of  independent  components  of  ICA were
optimized  and  systematically  selected  by descriptive  statistics.  The  elucidated  dominating  independent
C–MS components  were  involved  in  fuel  metabolism,  representing  one  of  the  most  affected  metabolic  changes
occurring  in  exercising  humans.  Conclusive  time  dependent  physiological  changes  of  the  metabolic  pat-
tern under  exercise  conditions  were  detected.  We  conclude  that  after  optimization  ICA  can  successfully
elucidate  key  metabolite  pattern  as  well  as  characteristic  metabolites  in  metabolic  processes  thereby  sim-
plifying  the  explanation  of  complex  biological  processes.  Moreover,  ICA  is  capable  to  study  time  series  in
complex  experiments  with  multi-levels  and  multi-factors.
. Introduction

A huge amount of complex data are generated especially by
on-hypothesis driven metabolomics approaches, including infor-
ation based on analytical characteristics like ion masses including
etabolites, fragments but also noise, as well as biological effects
e.g. metabolic processes, environmental influences, etc.). There-
ore, mining useful information in the collected data is a key step
n metabolomics, and chemometrics plays an important role in this
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context. Currently, principal component analysis (PCA) and par-
tial least-squares discriminant analysis (PLS-DA) are the commonly
applied methods. These approaches extract principal components
or latent variables from the data after dimension reduction. Unre-
lated factors or noisy components are excluded to focus solely
on useful information [1].  PLS-DA is an extension of PCA which
includes known class information aiming to maximize the separa-
tion between groups, and it is a typical supervised method. If the
knowledge about the biological processes or the analytical informa-
tion (e.g. noise) is ambiguous or lacking, supervised methods may
fail to separate biological information from miscellaneous data [2],
or they bear a high risk of over-fitting the data and misinterpreta-
tion of the observations may  happen [2,3].
An alternative strategy is independent component analysis (ICA)
[4,5], which is usually applied in the area of blind source separa-
tion (BSS). ICA has been widely and successfully utilized in signal
processing [6,7], image feature extraction [8,9], medical imaging

dx.doi.org/10.1016/j.jchromb.2012.06.030
http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
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10,11], genomics and protein profiling [12,13], process monitoring
14,15]. ICA can separate the source signals with non-Gaussianity
nd statistically independent data, thus it has also successfully
een applied in the areas of proteomics [13,16,17],  transcriptome
18] and metabolomics [19–24].  Although the numbers of princi-
al components after whitening and the independent components
re important for the explanations of the data and the biolog-
cal process [18], few papers were focused on the optimization
f ICA [18]. Furthermore, to the best of our knowledge the per-
ormance and potential benefits of optimized ICA in particular in
on-hypothesis metabolomics approaches have not been investi-
ated and described in detail.

In this study we optimized, evaluated and applied ICA in a non-
ypothesis-driven metabolomics approach based on descriptive
tatistics. By combining characteristic metabolites discovered by
CA with network analysis the biological interrelationship of inde-
endent component in metabolomics networks is demonstrated.
ptimized ICA was applied in a non-targeted metabolomics inves-

igation of human plasma samples collected at six different time
oints before, during and after a single bout of exercise. Investigat-

ng this complex metabolic process with multi-factorial influences,
he analytical performance of optimized ICA had been confirmed
y the detection of important metabolic pattern and identification
f key metabolites.

.  Theory

The typical problem solved by ICA is BSS. Subsequent to
he receipt by the receiver (e.g. by mass spectrometer in

etabolomics), the source signals are mixed into mixed signals. BSS
an separate these source signals based on the mixed signals with-
ut the information of source signals and the mixing approaches.
f the source signals are statistically independent from each other,
hen they can be separated by ICA.

The mathematical expression of ICA is:

 = As (1)

ere x = (x1, x2, . . .,  xk)T represents mixed signals, i.e. the detected
ata (signals, metabolites concentrations, etc.); s = (s1, s2, . . .,  sl)T

epresents the source signals, i.e. independent components; A is
he mixing matrix and represents the mixing approaches in signal

ixing.
The FastICA [25] algorithm for ICA is based on maximization of

on-Gaussianity and has the advantages of reliable, robust and fast
onvergence. In the following section we investigate the applica-
ility of FastICA as the ICA method in our metabolomics study.

The non-Gaussianity can be estimated by different methods like
urtosis and negentropy. The kurtosis is defined as:

urtosis (z) =
∑n

i=1(zi − �)4

(N − 1)�4
− 3 (2)

ere z represents the variable with the mean value � and the vari-
nce of �. A positive kurtosis means the variable is super-Gaussian,
nd a negative kurtosis means the variable is sub-Gaussian. The
urtosis of Gaussian distribution is 0.

FastICA algorithm is based on negentropy, and the detailed
escription and mathematical proof of FastICA can be found in the

iterature [5,25].  As the information of independent components
nd the mixing matrix are unknown, the variances (i.e. amplitudes
f the signals, including the signs) and orders of the independent
omponents cannot be determined by ICA [26].
Introducing BSS in metabolomics, x in Eq. (1) can be considered
s the metabolomics data recorded by the analytical instrument,
nd s (or A, depending on the input format of x, for details see
ection 4) can be considered as the impact factors with some
 910 (2012) 156– 162 157

non-Gaussianity and statistical independency in the metabolic
process. Then A (or s) can be considered as the weights of the
metabolites contributing to the independent components, conse-
quently the metabolites with large weights are the most important
metabolites in the investigated metabolic context.

Of note, the number of detected metabolites in metabolomics
data sets is generally much higher than the number of investigated
samples. Furthermore the data often contain variables not related
to the metabolic process (e.g. analytical noise). A useful prepro-
cessing strategy in ICA is to whiten the observed variables, and
the most commonly used whitening method is PCA. PCA whiten-
ing decreases the data into a few principal components, and these
principal components are used as the variables in ICA. Thus the vari-
ables of ICA are largely decreased and the variables with smaller
variance can be excluded (e.g. noise). The number of principal
components after whitening determined the remaining variances
(i.e. information) of the raw data and the exclusion of irrelevant
components. Thus this strategy may  support the elucidation of rel-
evant data thereby simplify the interpretation of the remaining
data set.

Scholz et al. [19] suggested the number of independent compo-
nents based on kurtosis measure of the independent components,
i.e. only the independent components with negative kurtosis were
selected. But this method is based on the pre-requisite that the
information of the data is solely included in the components with
sub-Gaussian distribution. Furthermore, the number of principal
components after whitening is not optimized by this approach.
Therefore, it may  be worthwhile to determine the number of prin-
cipal components and independent components simultaneously,
with no limitation to the non-Gaussian distribution of data, i.e.
applicable to all metabolomics data.

We applied in our approach the kurtosis as measure of non-
Gaussianity and studied the descriptive statistics for ICA with
different numbers of principal components and independent com-
ponents. Selecting these parameters and investigating the network
of characteristic exercise metabolites in human plasma discov-
ered by independent components, the relevance of independent
components and the performance of ICA in metabolomics were
investigated and discussed in our study.

3. Experimental

3.1. Samples

Eight volunteers were enrolled in the exercise study. The pro-
tocol of the study was approved by the local ethical committee
(H-D-2007-0127) conformed to the Declaration of Helsinki before
commencement, and all subjects gave the written informed con-
sent. The investigation was conducted in accordance with the
ethical principles of good clinical practice. The volunteers per-
formed one-leg knee-extensor exercise for 120 min  as described
elsewhere [27]. 48 blood samples were collected at the follow-
ing time points: before the exercise bout (=0 min), during the
exercise bout at 60 min  and 120 min, as well as in the recov-
ery phase (the subjects had to recover by lying in a bed) at
150 min, 180 min  and 300 min after the start of the experi-
ment. The plasma was immediately stored at −80 ◦C until sample
preparation.

3.2. Sample preparation
The plasma was thawed on ice. 100 �l of plasma was added
to 400 �l of methanol, then 20 �l internal standards (16.6 �g/mL
sorbic acid and 16.6 �g/mL D3-methyl lauric acid) in methanol
solution were added into the mixture. The mixture was vortexed
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Table 1
Statistic description of the randomly generated ICA models.

Dimension* Number of independent
components

Case** 500 models 1000 models 2000 models 5000 models

1 1 1 IC(24) IC(24) IC(24) IC(24)
2 1  1 IC(41) IC(41) IC(41) IC(41)

2  IC(50) IC(50) IC(50) IC(50)
2  2 1 IC(41,47) IC(41,47) IC(41,47) IC(41,47)

2  IC(38,50) IC(38,50) IC(38,50) IC(38,50)
3  1 1 IC(72) IC(72) IC(72) IC(72)

2 IC(77) IC(77) IC(77) IC(77)
3 2  1 IC(72,77) IC(72,77) IC(72,77) IC(72,77)
3  3 1 IC(17,72,77) IC(17,72,77) IC(17,72,77) IC(17,72,77)
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* Dimension was the number of principal components after whitening by PCA.
** Cases 1 and 2 were named randomly.

nd proteins were removed by centrifugating at 13,000 rpm for
0 min  at 4 ◦C. Following that the supernatant was collected and

yophilized. The lyophilized samples were derivatized with 50 �l
yridine and 100 �l BSTFA (bis(trimethylsilyl)trifluoroacetamide)
t 80 ◦C for 30 min.

.3. Instrumental conditions

A LECO Pegasus 4D GC × GC–TOF MS  instrument (LECO Cor-
oration, St. Joseph, MI,  USA, run in the GC–TOF MS  mode) with
n Agilent 6890 N GC was used. The carrier gas was Helium
99.9995%) with a constant flow of 1.2 mL/min. The GC column was

 30 m × 250 �m × 0.25 �m DB-5 column (J&W Scientific, Folsom,
A). 2 �l of sample was injected into the GC column by Agilent
683B autosampler (Agilent, Palo Alto, CA, USA) at a split ratio
f 1:5. The temperature of the GC oven was set as follows: start
t 70 ◦C, held for 3 min, then ramped at 10 ◦C/min up to 320 ◦C
nd held for 5 min. The ion source was set at 230 ◦C, the temper-
ture of GC inlet was 300 ◦C, and the temperature of the transfer
ine was 280 ◦C. Solvent delay time was 430 s to avoid solvent
eaks. The detector voltage was 1600 V and the electron energy
as −70 V. Mass spectra of m/z  33–600 were collected at 5 Hz

5 spectra/s).

.4. Data processing

The raw data collected by Leco ChromaTOF V3.25 software (Leco
orporation, St. Joseph, MI,  USA) were exported to CSV (comma
eparated value) files and peak alignment was performed by COW
correlation optimized warping) [28,29]. The peak tables of each
ample were merged into the data matrix (samples × variables)
y a home-made program written by Matlab (Mathworks, Natick).
he peak areas of the metabolites were normalized to the internal
tandards with the closest retention time. The peak areas of inter-
al standards were calculated by Leco ChromaTOF, based on the
haracteristic ions of m/z  169 for sorbic acid and m/z 105 for D3-
ethyl lauric acid. The final data matrix contained 173 metabolites

er sample and 48 samples in total (8 subjects × 6 time points per
ndividual).

FastICA was performed with the algorithm given by Hyvärinen
5] in the Matlab. A home-made Matlab program was  designed to
erform descriptive statistics of ICA. The characteristic metabolites
iscovered by ICA were identified by mass spectrum similar-

ty searches of NIST MS  search 2.0 (NIST/EPA/NIH Mass Spectral

ibrary, NIST 05). The Kendall rank correlation coefficients were
alculated by the SPSS software, and the metabolic network of the
haracteristic metabolites were constructed by the Cytocape soft-
are.
4. Results and discussion

4.1. The descriptive statistics for ICA

The results of ICA were simply described as follows:

(1) ICm
n : the metabolomics data were reduced to n dimensions, i.e.

PCA was  performed to compress the data to n principal compo-
nents, and then ICA was  run to get m independent components
(ICs).

(2) IC(k1, k2, . . .): ICA model with the independent components
where the kurtosis values are k1, k2, k3,. . . As the order of
independent components could not be determined by the ICA
algorithm, we ordered them by their kurtosis values. To define
a specific ICA model, it was written as ICm

n (k1, k2, . . .).
(3) S(k): the independent component with kurtosis of k.
(4) A(k): the mixing matrix of the independent component with

kurtosis of k.

ICA maximizes non-Gaussianity of the data, and the FastICA
algorithm measures non-Gaussianity based on the negentropy.
We  used kurtosis here, a classical measure of non-Gaussianity, to
denominate and describe the results of ICA, i.e. each IC and the
mixing matrix of the IC.

A novel approach based on descriptive statistics was established
to optimize ICA model. We  had observed that ICm

n (n > 1) might
have different convergence results when calculating ICA model at a
time. These convergence results had different kurtosis values, mix-
ing matrices and ICs (details see below). This situation might occur
when the maximization process of the ICA has different extremes.
To search all of the possibilities of the maximization results, we
established different number of randomly generated ICA models,
having the same number of dimensions and independent com-
ponents. By descriptive statistics of these models with their ICs,
mixing matrices and kurtosis values, we can deduce how to deter-
mine the number of principal components after whitening and the
number of independent components by optimization.

In previous investigations [19,21,30] the data ‘x’ were
modelled to ‘A × s’ by two different approaches: if x was
variables × observations, then the independent component ‘x’ rep-
resents the weight matrix of the metabolites, and the mixing matrix
‘A’ represents the impact factors in the metabolic process [21]; if
x was  observations × variables, then the mixing matrix ‘A’ repre-
sents the weight matrix of the metabolites, and the independent
component ‘x’ represents the impact factors in the metabolic pro-
cess [19,30]. These two different input approaches may  both be

applied in metabolomics in theory, however we applied an alter-
native strategy.

It is noteworthy that in our research when the input was
variables × observations, the algorithm will not be convergent in
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Fig. 1. (A) Mixing matrices (A(38) and A(50)) of IC2
2(38, 50), and mixing matrices

2
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ome models, therefore we did not apply this input approach
or our further descriptive statistics. Applying the input observa-
ions × variables we achieved descriptive statistics results of the

odels given in Table 1. If the kurtosis value was rounded to inte-
er, the changing of kurtosis value was less than 2% (even less than
% in most of cases), and S(k) and A(k) were very similar for the cases
here kurtosis values were the same after rounding. Therefore all

f the kurtosis values were rounded to integers, and the indepen-
ent components with the same kurtosis value were considered as

dentical independent component. This process was denominated
s degeneracy in the presented study.

To denote the metabolic changes during the exercise and the
ecovery phase, the mixing matrix values at each time point of every
ndividual were averaged. Thus the time trend plot of the mixing

atrix represented the changes of different impact factors at each
ime point. The averaging process can also decrease the influences
iven by individual differences of the volunteers and the system
oises.

The data were reduced to n dimensions for ICm
n after whitening,

owever it was not possible to estimate the number of different
CA modelling results (different cases) when the number of inde-
endent components was fixed as m. The descriptive statistics of
andomly generated ICA models can give every possible results and
orresponding probabilities, see Table 1. It shows that the numbers
f models had no influence on the cases. 500, 1000, 2000 and 5000
odels will give the same numbers of cases and the same indepen-

ent components, regardless the number of models, as shown in
able 1. For example, after degeneracy, 500, 1000, 2000 and 5000
odels will all generate two different case of IC1

2, i.e. IC(41) and
C(50). The only minor differences were the frequencies. The fre-
uency of IC(41) in 500 models was 0.432, the frequency of IC(50) in
00 models was 0.568, while the frequency of IC(41) in 5000 mod-
ls was 0.462, the frequency of IC(41) in 5000 models was 0.538.
o case in Table 1 had low frequency, showing that they were not
enerated by chance. The changes in the number of the generated
odels will not lead to the changes in the cases of ICm

n . Thus we
hose the results of 1000 models for further discussion.

If m equals 1, all of different convergences results should be
chieved, i.e. all of the extremes during maximization may  appear.
f the number of different ICA modelling results (cases) for IC1

n was
, the case number for ICm

n (m = 2, . . . n) should be ICm
w (if w < m,

t should be 1), i.e. the independent components in ICm
n should be

he permutation and combination of the independent components
f IC1

n. The results of Table 1 were well in line with the deduction
escribed above, e.g. the case number of IC1

3 was 2, and the cases
umber of IC2

3 and IC3
3 was 1. Furthermore, both S(k) and A(k) of

C2
3 and IC3

3 were very similar to those of IC1
3. But the case number

f IC2
2 was 2, the same as IC1

1. When investigating two cases of IC2
2,

hey were substantially the same, as shown in Fig. 1. Fig. 1A shows
hat IC2

2(38, 50) and IC2
2(41, 47) had very similar mixing matrices,

.e. A(47) and A(50) were similar, and A(38) and A(41) were similar.
ead-to-tail depictions given in Fig. 1B and C, clearly demonstrate

hat the ICs of IC2
2(38, 50) and IC2

2(41, 47) were also comparable.
he kurtosis values of the similar ICs in IC2

2(38, 50) and IC2
2(41, 47)

iffered by only 8%, i.e. their non-Gaussianities were also simi-
ar. Consequently IC2

2(38, 50) and IC2
2(41, 47) were substantially the

ame case. Thus degeneracy of them was reasonable.
The number of independent components in IC3

3 was higher than
or IC1

3, i.e. the case number of IC1
3 was only 2. Fig. 2 shows the mixing

atrices and ICs in IC3
3. A(77) and A(72) were similar (Fig. 2A), and

he linearity between them at each time point was  also very good
R2 = 0.9676). But as shown in the head-to-tail description in Fig. 2B,

(77) and S(72) were different. Fig. 2C shows S(72) was similar to
(17), although there are obvious differences in the absolute values
S(72) was larger than S(17)). Moreover, the kurtosis values of the
(A(41) and A(47)) of IC2(41, 47), (B) and (C): head-to-tail depictions of independent
components of IC2

2(38, 50) and IC2
2(41, 47), (B) S(47) and S(50); (C) S(41) and S(38).

The x-axis is the serial numbers of the detected metabolites.

ICs of IC3
3 showed a pronounced difference, e.g. the kurtosis val-

ues of S(17) and S(77) were 120% different. In summary, the cases
of IC3

3 were obviously different, and they could not be taken into
degeneracy. A(77) was similar to A(72), but S(77) was not similar to
S(72). The situation above suggested the independent components
in IC3

3 were all confused. A possible explanation of this situation
could be that the maximization process of the ICA could not find
three extremes simultaneously, resulting in a mixing between two
extremes (i.e. two cases in IC1

3). Therefore this situation could be
a clew for selecting optimal number of principal components and
independent components.

It can be concluded from the results above that the data can
reach the maximized non-Gaussianity in IC2

2. If one more indepen-
dent component is calculated the algorithm will lead to a mixing
result. Thus optimal number of independent components should
be 2. Furthermore, the case number of IC1

3 and IC1
2 were the same

indicating that one more principal component would contain no
more information. Thus the number of principal components after
whitening should be 2.

Based on descriptive statistics, the number of principal compo-
nents after whitening and the number of independent components
can be determined as follows:
(1) When the number of independent components is within
an appropriate range: if the case number of independent
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ig. 2. (A) Mixing matrices (A(17), A(72) and A(77)) of IC3
3(17, 72,  77), (B) and (C):

ead-to-tail depictions of independent components of IC3
3(17, 72,  77), (B) S(72) and

(77), (C) S(17) and S(72). The x-axis is the serial numbers of the detected metabo-
ites.

components in IC1
n is w, then the case number of indepen-

dent components in ICm
n (m = 2, . . . n) will be Cm

w (when w < m,
it should be 1).

2) When the A matrices and S matrices are all similar for some
independent components, and their kurtosis values are also
similar, they can be taken into degeneracy.

3) When the A matrices (or S matrices) are similar for some inde-
pendent components, but the S matrices (or A matrices) are
obviously different and their kurtosis values are not similar,
they cannot be taken into degeneracy.

4) Subsequent to degeneracy: if the number of different indepen-
dent components in all ICm

n (2,  . . . n) cases are higher than in IC1
n,

it suggests that the convergence of ICA reach a mixing result,
thus the number of independent components should be less
than m.

5) If the case number of IC1
n+1 is the same as IC1

n, it suggests that
the number of principal components after whitening should be
n.

.2. The metabolic locus analysis based on ICA

The impact factors at each time point were analyzed based
n the optimal number of principal components and independent
omponents for the data. IC2

2 led to two results which can be taken

nto degeneracy, i.e. IC(38,50) and IC(41,47). Further investigations

ere exemplarily performed with IC(38,50).
Two different time loci in the trend plot of the mixing matrix in

ig. 1A became obvious. A(50) decreased at 120 min  (of note, since
Fig. 3. Metabolic locus plots of time dependent metabolic alterations by combining
(A) the mixing matrices of both independent components in ICA and (B) the scores
of both principal components in PCA.

in ICA the signs of the ICs are not defined, this change may  also be
an increase). This was followed by a switch back to a similar level
comparable to the situation before the exercise bout. A(38) was
slightly increasing from 0 to 60 min. Then the levels were decreas-
ing until the end of the exercise bout at 120 min  (Fig. 1A) and no
obvious change occurred thereafter. The metabolites, which had
the highest values in S(38) and S(50) matrices (Fig. 1B and C), can
be considered as the characteristic metabolites for corresponding
independent components.

By combining the mixing matrices of both independent com-
ponents, a comprehensive time locus plot was  elucidated (Fig. 3A)
representing a holistic view on the time dependent metabolic alter-
ations. From pre-exercise (0 min) to 60 min, the metabolic locus
was  along A(38) (y-axis), after 60 min, the metabolic locus was
along both A(38) (y-axis) and A(50) (x-axis). The final metabolic
locus within the recovery phase (300 min) was towards the pre-
exercising metabolic state (0 min), which fits well to the expected
metabolic changes during recovery following an exercise bout, and
these changes were primarily along A(50). Furthermore, the plot
shown in Fig. 3A revealed that the alterations at 60–120 min  and
120–180 min  were most pronounced. This is well in line with the
changes in the physiological processes in a 120 min  exercise experi-
ment performed near to exhaustion followed by the recovery phase
where many metabolites drops from the end of the exercise bout
at 120 min  to the 180 min  time point in the recovery phase. It con-
firms the power of the applied ICA analysis. These changes of the
metabolic pattern were all associated with both A(38) and A(50),
which shows that these metabolic changes are interrelated.

As an alternative approach PCA was  applied to model the data
and two principal components were selected (Fig. 3B). Subsequent
to the averaging of the scores at the observations of the investi-
gated time points, a metabolic locus can also be generated based
on PCA. However, the extents of alterations in metabolism from
0 min to 60 min  and 60 min  to 120 min  were similar to those seen
in Fig. 3A from the ICA. PCA can only model the data to elucidate
the directions of the largest variances (principal components), but

these principal components have no evident physiological rele-
vance. In contrast, independent components from ICA are detected
based on their biological importance in the investigated context as
demonstrated in the following section.
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Table 2
Characteristic metabolites of independent components of IC(38,50) detected by
GC–TOF MS.  Only metabolites having absolute values >1 in the independent com-
ponent matrices were selected.

Characteristic metabolites of S(50) Characteristic metabolites of S(38)

No. Identification* No. Identification*

22 Unknown 12** 3-Hydroxybutyric acid
23** Urea 22 Unknown
48** Unknown 73 Unknown
55** Threonic acid 83 Gluconic acid
62** Unknown 89 Glucose***

73 Unknown 101 Glucose***

83 Gluconic acid 107** Palmitic acid
84** Deoxy myo-inositol 121** Linoleic acid
89  Glucose*** 122** Oleic acid

101  Glucose*** 126** Stearic acid
144 Unknown 144 Unknown
145 Unknown 145 Unknown
161 Cholesterol 161 Cholesterol

* The identified compounds resulted from mass library searches. Most of them
were confirmed by the analysis of standard compounds.
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Fig. 4. Metabolic network based on characteristic metabolites of two  independent
components. All of the significantly correlated metabolites (Kendall rank correlation
analysis, p < 0.01) were linked by beelines in the network.

Fig. 5. Time trend plot of a characteristic metabolite of S(38), exemplarily shown
** Metabolites belong solely to one independent component.
*** Showed different retention times (possibly �- and �-d-glucose)

.3. The metabolic network and the independent components

The relevance of independent components in ICA for non-
ypothesis driven metabolomics was evaluated by elucidation of
haracteristic metabolites and metabolic network. In this study
he selection criteria for these characteristic metabolites was
n absolute value >1.0 in the independent component matrices.
able 2 shows exemplarily the identified metabolites and several
nknowns of S(38) and S(50). The metabolites had been identified
y mass library search of the GC–TOF MS  data and the majority was
onfirmed further by the analysis of standard compounds. Both
Cs contain 13 characteristic metabolites with an absolute value
f >1. Of note, most of these metabolites are directly related to
etabolic pathways of fuel supply (glucose and lipid metabolism),
hich is well in line with the enhanced energy demand of the

ody under exercise conditions and subsequent physiological reac-
ions of the body. Switches between glucose and lipid oxidation are
ell known metabolic changes during exercise and in the recovery
hase [31,32].  Of note, a very interesting finding is that several free
atty acids were detected in S(38) but not in S(50) (Table 2).

Since eight of these compounds were common characteristic
etabolites of both two independent components we  established

 metabolic network by calculating Kendall rank correlation coef-
cients between these characteristic metabolites. The significantly
orrelated metabolites (p < 0.01) were linked by beelines, shown
n Fig. 4. Interestingly two subnets became obvious (separated by

 dash-dotted line; Fig. 4). The interrelationships within the sub-
ets are high and the connections between the subnets are low. A
ery interesting finding is that all fatty acids can be found in subnet
, also including the ketone body 3-hydroxybutyrate reflecting a
atabolic metabolism with increased �-oxidation. This finding may
ndicate that the metabolites detected in subnet 2, which all can be
ound in S(38), are associated with changes in lipid metabolism.
witches between glucose and lipid oxidation during a 120 min
xercise bout followed by 3 h recovery are very likely [31,32].  This
ypothesis is confirmed by the time course investigation of free

atty acids, exemplarily shown for palmitic acid in Fig. 5 one of the
ominating free fatty acids in blood. This characteristic metabo-

ite of S(38) showed significant changes in the studied exercise
ime interval. The time kinetic of palmitic acid was dominated by a
arked increase from 60 to 120 min  of exercise and subsequently
 rapid drop. Lactate peaked at 60 min  and showed a dramatic fall
hereafter (data not shown), indicating that anaerobic glycolysis
for  palmitic acid.

played a major role in the first phase of exercise. We  conclude
based on our findings that between 60 and 120 min the energy
was, at least in part, supplied mainly by the oxidation of fatty acids.
The increase in plasma free fatty acids may  reflect in this context
increased lipolysis in adipose tissue to supply the exercising mus-
cle with free fatty acid as fuel source for the generation of ATP via
�-oxidation [33]. Based on these physiological consistent findings
we conclude that ICA is suitable to detect physiological interrela-
tionships by extraction from complex non-targeted metabolomics
data sets. In addition our analytical strategy simplified the expla-
nation of data resulting from non-hypothesis driven metabolomics
approaches.

5. Conclusions

Independent component analysis (ICA) was optimized and
subsequently applied to non-hypothesis driven GC–TOF MS
metabolomics data of an exercise study. Descriptive statistics
showed its ability to optimize ICA by selecting the numbers of
principal components after whitening and the independent com-
ponents. ICA data treatment elucidated conclusive time dependent
physiological changes of the metabolic pattern in human plasma
before, during and after a single bout of exercise. The dominat-
ing detected compounds mainly represent metabolites from the
fuel metabolism, i.e. from the most affected metabolic pathways in
exercising and recovering humans. ICA can successfully elucidate
key metabolite pattern as well as metabolites in metabolic pro-

cesses and to simplify the explanation of these biological findings.
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